
LLNL-TR-658716

A Bayesian Framework for Locating
Seismic Events Using Absolute Arrival
Time Data along with Back Azimuth and
Slowness Observations

G. Johannesson, S. C. Myers

August 12, 2014



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



A Bayesian Framework for Locating Seismic Events

Using Absolute Arrival Time Data along with

Back Azimuth and Slowness Observations

Gardar Johannesson and Stephen C. Myers

Lawrence Livermore National Laboratory

Version: August 13, 2014

LLNL-TR-658716

This work was performed under the auspices of the U.S. Department of
Energy by Lawrence Livermore National Laboratory under contract

DE-AC52-07NA27344.

Abstract

We outline a Bayesian framework to blend together observed seis-
mic arrival times, back azimuth, and slowness data to locate seismic
events. Previously we have developed a Bayesian seismic event locator,
BayesLoc, that uses seismic arrival times of multiple phases to locate
seismic activity. The approach taken to incorporate back azimuth and
slowness data very much reflects the treatment the arrival time data in
the current version of BayesLoc; by introducing statistical “bias” cor-
rections and “precision” factors. There is a work in progress to extend
the arrival time only BayesLoc program to take advantage of possible
back azimuth and slowness data following the template outlined in this
document.
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1 Introduction

The problem of locating seismic events can be viewed as a classical inver-
sion problem: given a forward model and observed output data, invert for
unknown seismic origin input parameters to the forward model that “best”
explain the observed output data. A particular successful approach to such
inversion/calibration problems is a Bayesian approach, which treats the un-
known inputs/parameters as stochastic and therefore yields a probabilistic
solution; see for example Kaipio and Somersalo (2004) and Tarantola (2004)
for a general introduction to the topic.. Bayesian methods have been ap-
plied successfully to locate seismic events, as for example in BayesLoc (Myers
et al., 2007, 2009; Johannesson et al., 2010).

One of the major strength of the Bayesian approach is its probabilistic
characterization of uncertainties in the estimated seismic source parame-
ters, which can be critical for downstream inference/decision making (e.g.,
the probability that a given seismic event is within a given region or sim-
ply a map of the region that is deemed to contain the event with say 90%
probability). Another, and often overlooked, strength of Bayesian inversion
is the general statistical approach to describe all the sources of errors in the
whole process, from the unknown seismic source parameters to the observed
output, which includes how the errors in the observations are treated and
how a bias in the forward model is handled (e.g. travel times of various
seismic phases). This is particularly important when the noise (the errors)
in the observed data, say the picked absolute arrival times of various seis-
mic phases at a collection of stations, is far from being homogeneous, with
some station producing more accurate observations than others and with
some phases being more easily “picked” than others. Similarly, the assumed
travel-time model has biases which varies with phases and stations, all of
which can be described with statistical models.

In short, a successful Bayesian seismic inversion doesn’t only yield a
probabilistic characterization of the unknown seismic origin parameters,
but also a probabilistic correction to the assumed travel-time model and
correctly “weights” the observed arrival times to reflect the variation in ac-
curacy across stations and phases. This is exactly what BayesLoc does when
locating multiple seismic events given observed arrival times.

The general Bayesian approach used to “correct” the underling travel
time model and “weight” the observed arrival data differently can also be
applied to take advantage of a totally new source of seismic observations
that related to the seismic origin parameters, for example back azimuth and
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slowness (Rost and Thomas, 2002). As for the arrival time data, biases in the
“forward model” for the back azimuth and slowness are estimated, within
the Bayesian framework, and the accuracy of the back azimuth/slowness
data is characterized. As a result, the estimated seismic origin parameters
are both impacted by the arrival time data and the back azimuth/slowness
data, but the “weight” of each data source reflects the fidelity of the forward
model and the accuracy of the observed data, both of which are estimated
simultaneously along with the unknown source parameters.

What follows is a brief overview of the BayesLoc model for absolute ar-
rival time data (Myers et al., 2007, 2009; Johannesson et al., 2010). We then
outline how the current BayesLoc model can be augmented with back az-
imuth and slowness data, to yield stronger inference on the unknown seismic
origin parameters.

2 BayesLoc for Arrival Time Data from a Cluster
of Events

Starting with the (absolute) arrival time data, let

awij ≡ the arrival time of phase w from the i-th event to the j-th
seismic station.

We note that not all combination of wij have observed arrival times and are
simply treated as “missing” (to simplify notation). The forward model in
this case is the predicted travel time for each phase of interested from the
unknown event locations to the known seismic stations,

Fw(si, rj) = Fwij ≡ the predicted travel time of phase w from the i-th
event to the j-th seismic station,

where

si = (xsi , y
s
i , z

s
i ) ≡ the location of the i-th event and

rj = (xrj , y
r
j , z

r
j ) ≡ the location of the j-th seismic station.

The predicted arrival time is then given by oi + Fwij , where

oi ≡ the origin time of the i-th event.
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2.1 Bayesian Formulation

At the core of the Bayesian formulation of the seismic location problem
in BayesLoc are conditional and prior probability distribution functions
(PDFs), which given data, yields the posterior PDF of all the unknowns;
see Gelman et al. (2013) for an overview of building hierarchical Bayesian
models for data. The core conditional PDF is that of the observed ar-
rival time data, given a particular realization of the unknown seismic origin
parameters, along with all possible travel time correction parameters and
arrival time residuals precision parameters. The core prior PDFs are then
those that express our prior knowledge about the seismic origin parameters
(lat, long, depth, and time), along with prior PDFs for possible travel-time
corrections and precision parameters, to be outlined below.

To start with, the observed arrival time data is assumed to be indepen-
dently Gaussian distributed;

p(awij | oi, si, δwij , κwij) = Gau(awij | oi + Fw(si, rj) + δwij , κ
−2
wij), (1)

where p(· | · · · ) denotes a conditional PDF, Gau(y |µ, σ2) denotes the Gaus-
sian PDF (for y) with mean µ and variance σ2, δwij is a travel time correction
to the assumed travel time model, and κwij is the precision of the Gaussian
PDF, equal to the inverse variance.

The travel time correction applied in BayesLoc for event clusters is given
by an additive model of various correction factors;

δwij = β1,w + β2,wDij + β3,j + β4,wj , (2)

where β1,w is a phase-specific shift in the travel time curve, while β2,w cap-
ture event-to-station distance related deviation, with Dij = ‖si−rj‖g as the
geodesic distance (in degrees) between the i-the event and the j-th station
The β3,j and β3,wj are somewhat different and capture station and station-
phase specific travel time corrections. In the Bayesian formulation, the β’s
are all assumed unknown and stochastic with the prior distribution for β1,w
and β2,w taken as

p(β1,w) = Gau(β1,w |Mβ1w, Vβ1w), for w = 1, . . . , nph, and

p(β2,w) = Gau(β2,w |Mβ2w, Vβ2w), for w = 1, . . . , nph,

where the means and the variances, the M ’s and the V ’s, are assumed
known. On the other hand, the β3,j ’s and the β4,wj ’s are treated slightly
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differently where we assume;

p(β3,j | τβ3) = Gau(β3,j | 0, τ−2
β3

), for j = 1, . . . , nsta, and

p(β4,wj | τβ4w) = Gau(β4,wj | 0, τ−2
β4w

), for w = 1, . . . , nph, j = 1, . . . , nsta,

where further the τ ’s are assumed unknown and stochastic. The prior PDFs
fo the τ ’s are taken as;

p(τβ3) = Gam(τβ3 |Aβ3 , Bβ3) and

p(τβ4w) = Gam(τβ4,w |Aβ4w, Bβ4w), for w = 1, . . . , nph,

where Gam(y |α, β) denotes a Gamma PDF (for y) with shape parameter
α and scale parameter β (i.e., a Gamma PDF with mean α/β and variance
α/β2).

Few remarks. The β1’s and β2’s capture large-scale corrections to the
assumed travel time model (e.g., ak135), while the β3’s and β4’s capture
small-scale shifts at each station (the β3’s) and further at each station-phase
(the β4’s). Note that the distribution of the β3’s and β4’s is centered on zero
a priori, but with unknown variance (such variables are often termed as
random effects in the statistics literature). This formulation drives the β3’s
and β4’s to concentrated as much as possible around zero (yielding higher
total likelihood), with the tightness controlled by the τ ’s. The prior PDF
for the τ ’s is typically taken to yield vague prior knowledge, as to let the
posterior PDF of the τ ’s, and hence the spread of the β3’s and the β4’s to be
drive by the need to correct the underlying travel time model at the station
and station-phase level for a particular event cluster.

The Bayesian treatment of the arrival time residual precision, κwij , mir-
rors that of the travel time corrections, with

κwij = κ1,wκ2,iκ3,j , (3)

where we refer to the κ’s as precision factors. The precision factors are as-
sumed unknown and stochastic with the following know prior for the phase-
specific precision factor;

p(κ1,w) = Gam(κ1,w |Aκ1w, Bκ1w), for w = 1, . . . , nph,

where Aκ1w and Bκ1w are known. We treat the κ2’s and the κ3’s as precision
random scaling effects by assuming that

p(κ2,i |λ2) = Gam(κ2,i |λκ2 , λκ2) for i = 1, . . . , nev, and

p(κ3,j |λ3) = Gam(κ3,j |λκ3 , λκ3) for j = 1, . . . , nsta,
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where λκ2 and λκ3 are unknown and assigned a vague Gamma prior PDFs;

p(λκ2) = Gam(λκ2 |Sκ2 , Bκ2) and p(λκ3) = Gam(λκ3 |Sκ3 , Bκ3).

Few remarks. The κ1,w’s capture the overall precision of the corrected
arrival time residuals (awij − (oi + Fwij + δwij)) for each phase w. The
κ2’s and the κ3’s can be interpreted as event- and station precision random
scaling factors that are assumed to come from a Gamma PDF with mean
equal to one (and variance of 1/λ). The λ’s are then typically assigned a
vague prior PDFs as to let the data drive the shape of the posterior PDFs
(and the spread of the precision scaling factors around one).

2.2 Posterior Inference

The joint PDF of the arrival time data and all the unknown variables (the
origin parameters plus both travel time correction and precision parameters)
is given by

p(a, s,o,β, τ ,κ,λ) = p(a |o,F(s),β,κ)

× p(β | τ )p(τ )

× p(κ |λ)p(λ)

× p(s)p(o),

(4)

where

p(a |o,F(s),β,κ) =
∏
wij

Gau(awij | oi + Fw(si, rj) + δwij(β), κwij(κ)−1),

and a is a vector containing all the arrival data, o a vector of all the origin
times, F(s) a vector of all the predicted travel times (for a given collection of
origin locations, s), β is a vector of all the travel time correction parameters
(and δwij(β) the resulting travel time correction), and κ is a vector of all the
precision factors (and κwij(κ) the resulting precision). The remaining PDFs
in (4) are similarly defined as the product of the individual PDFs, with rel-
evant variables grouped into vectors. We can simplify notation considerable
by letting

α = (β, τ ,κ,λ),

that is grouping all the travel time correction and the precision parameters
into a single vector. The joint (prior) PDF of α is then given by

p(α) = p(β | τ )p(τ )p(κ |λ)p(λ)
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and the joint PDF of (4) becomes

p(a, s,o,α) = p(a |o,F(s),α)p(α)p(s)p(o). (5)

The posterior PDF of interest, which conditions on the observed arrival
time data, is then simply proportional to the joint PDF,

p(s,o,α |a) = p(a, s,o,α)/p(a) ∝ p(a, s,o,α)

p(a |o,F(s),α)p(α)p(s)p(o).
(6)

Markov chain Monte Carlo (MCMC) algorithm is used to sample from
the joint posterior PDF of (6) using a mixture of conditional Gibbs samplers
and Metropolis-Hasting random-walk samplers (see Johannesson et al. 2010
for details and e.g. Robert and Casella 2004 for a general overview of Monte
Carlo sampling techniques). The end result is a sample of realizations from
(6) which can be used to estimate any summary statistics of interest (e.g.,
the posterior mean epicenter of each event, including summary statistics for
the travel time correction parameters and the precision factors).

3 Incorporating Back Azimuth and Slowness Data
into BayesLoc

We will take a similar approach to incorporate back azimuth and slowness
observations into BayesLoc as we did with the arrival data; by formulating
a joint distribution similar to the one in (4) that links the observed data to
the unknown origin parameters.

Let

θwij ≡ the observed back azimuth for phase w, event i, and sta-
tion j

,

uwij = 1/vappwij ≡ the observed slowness, equal to one over the
apparent velocity of the wave front at the station array,
for phase w, event i, and station j.

As for the arrival data, not all combination of wij are observed and are
simply treated as missing. The forward models in this case are

F θ(si, rj) = F θij ≡ the back azimuth (clockwise from north) from sta-
tion j to event i,

F uw(si, rj) = F uwij ≡ the predicted slowness for phase w, from event i
at station j.
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Note that the predicted back azimuth is the same for all phases, but we
can potentially have observations of the back azimuth derived from multiple
phases for a given event-station pair.

3.1 Bayesian Formulation

The Bayesian formulation for including back azimuth and slowness data
follows the template used to incorporate the arrival time data.

3.1.1 Back Azimuth

Starting with the back azimuth data, we assume that

p(θwij | si, δθwij , κθwij) = vMF(θwij |F θ(si, rj) + δθwij , κ
θ
wij), (7)

where vMF(θ |µ, κ) denotes a von-Mises-Fisher distribution (or just von-
Mises in this case) for θ with mean angle µ and concentration parameter κ
(the variance of the distribution is 1− I1(κ)/I0(κ), where I1(·) and I0(·) are
the modified Bessel functions of order 1 and 0, respectively). The von-Mises
distribution approximates a wrapped Gaussian distribution on the circle.

We take the back azimuth correction δθwij to be of the form

δθwij = βθ1,j + βθ2,wj ,

which is very similar in spirit to the travel time corrections applied to the
arrival data, with βθ1 ’s capturing the overall station corrections to the pre-
dicted back azimuth to the event cluster and the βθ2 ’s capturing station-phase
interactions in the corrections. Both variables are treated as random effects,
meaning that

p(βθ1,j | τβθ1 ) = vMF(βθ1,j | 0, τβθ1 ), for j = 1, . . . , nsta, and

p(βθ2,wj | τβθ2w) = vMF(βθ2,wj | 0, τβθ2w), for w = 1, . . . , nph, j = 1, . . . , nsta.

Hence, the collection of the station corrections is centered around zero, with
the concentration parameter τβθ1

controlling how tight the population is
around zero, and similarly for the station-phase corrections, with a different
concentration parameter for each phase. The concentration parameters are
treated as unknown and stochastic with the following known prior distribu-
tions;

p(τβθ1
) = Gam(τβθ1

|Aβθ1 , Bβθ1 ) and

p(τβθ2w
) = Gam(τβθ2 ,w

|Aβθ2w, Bβθ2w), for w = 1, . . . , nph,
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where the A’s and the B’s are known (and typically specified to yield a
vague prior knowledge).

The concentration parameter κθwij of (7) is treated similarly as in the
case of the arrival time data and factored into the following concentration
scaling factors,

κθwij = κθ1,wκ
θ
2,iκ

θ
3,j .

Each of the κθ1,w is assigned a known PDF,

p(κθ1,w) = Gam(κθ1,w |Aκθ1w, Bκθ1w), for w = 1, . . . , nph.

However, the κθ2’s and the κθ3’s are treated as random scaling factors with,

p(κθ2,i |λκθ2) = Gam(κθ2,i |λκθ2 , λκθ2) for i = 1, . . . , nev, and

p(κθ3,j |λκθ3) = Gam(κθ3,j |λκθ3 , λκθ3) for j = 1, . . . , nsta,

where λκθ2
and λκθ3

are unknown and given known Gamma prior PDFs,

p(λκθ2
) = Gam(λκθ2

|Sκθ2 , Bκθ2) and p(λκθ3
) = Gam(λκθ3

|Sκθ3 , Bκθ3).

3.1.2 Slowness

The slowness data is treated very much like the arrival time data, except
with the assumption that the slowness is log-Gaussian distributed, that is,

p(log uwij | si, δuwij , κuwij) = Gau(log uwij |F uw(si, rj) + δuwij , (κ
u
wij)

−2). (8)

The log-slowness corrections are given by the additive model,

δuwij = βu1,w + βu2,wDij + βu3,j + βu4,wj , (9)

which is identical in form as the travel-time correction model in (2). The
correction parameters are modeled in an identical fashion as those of the
travel time correction model, with the following known priors PDFs for βu1 ’s
and βu2 ’s;

p(βu1,w) = Gau(βu1,w |Mβu1w
, Vβu1w), for w = 1, . . . , nph, and

p(βu2,w) = Gau(βu2,w |Mβu2w
, Vβu2w), for w = 1, . . . , nph.
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On the other hand, the βu3 ’s and the βu4 ’s are treated as Gaussian random
effects with

p(βu3,j | τβu3 ) = Gau(βu3,j | 0, (τβu3 )−2), for j = 1, . . . , nsta, and

p(βu4,wj | τβu4 ) = Gau(βu4,wj | 0, (τβu4w)−2), for w = 1, . . . , nph, j = 1, . . . , nsta,

where the τ ’s are assumed unknown and stochastic and given known Gamma
priors PDFs;

p(τβu3 ) = Gam(τβu3 |Aβu3 , Bβu3 ) and

p(τβu4w) = Gam(τβu4 ,w |Aβu4w, Bβu4w), for w = 1, . . . , nph.

The Bayesian treatment of the log-slowness precision, the κuwij of (8), is
also identical to the treatment of the arrival time precision in (3), assuming
the following factorization;

κuwij = κu1,wκ
u
2,iκ

u
3,j .

The phase-specific precision factors are given a known Gamma priors,

p(κu1,w) = Gam(κu1,w |Aκu1w, Bκu1w), for w = 1, . . . , nph,

but the event- and station-specific factors are treated as Gamma random
scaling factors;

p(κu2,i |λκu2 ) = Gam(κu2,i |λκu2 , λκu2 ) for i = 1, . . . , nev, and

p(κu3,j |λκu3 ) = Gam(κu3,j |λκu3 , λκu3 ) for j = 1, . . . , nsta,

where λκu2 and λκu3 are unknown and given known Gamma prior PDFs;

p(λκu2 ) = Gam(λκu2 |Sκu2 , Bκu2 ) for p(λκu3 ) = Gam(λκu3 |Sκu3 , Bκu3 ).

Some remarks. As stated above, the log-slowness corrections are inde-
pendent from the travel time corrections of (2). However, as the slowness
relates to the inverse of the derivative of the travel time curve, it is not un-
reasonable to propagate some of the corrections applied to the travel time
model to the slowness model, for example the large-scale correction in slope
of the travel time curve provided by β2Dij in (2).
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3.2 Posterior Inference

As with the arrival data model, to simplify notation we let

αθ = (βθ, τ θ,κθ,λθ) and αu = (βu, τu,κu,λu).

The prior PDFs for the collection of the correction and the precision param-
eters is then given by

p(αθ) = p(βθ | τ θ)p(τ θ)p(κθ |λθ)p(λθ) and

p(αu) = p(βu | τu)p(τu)p(κu |λu)p(λu).

We can then write the joint distribution of the back azimuth data and the
log-slowness data as

p(θ,u, s,αθ,αu) = p(θ |Fθ(s),αθ)p(u |Fu(s),αu)

× p(αθ)p(αu)p(s).
(10)

Note that the back azimuth/slowness data does not provide any (direct) in-
formation about the origin times (the oi’s). The posterior PDF with respect
to the back azimuth/slowness data is then given by

p(s,αθ,αu |θ,u) =
p(θ,u, s,αθ,αu)

p(θ)p(u)
∝ p(θ,u, s,αθ,αu). (11)

This posterior PDF can be sampled using MCMC, using a combination of
Gibbs sampler and Metropolis-Hasting random-walk samplers, very much
along the current approach in BayesLoc for the arrival time data.

It should be obvious by now how the arrival data and the back az-
imuth/slowness data can be blended together to form a posterior PDF of all
unknowns (s, o, α, αθ, αu) conditioning on all the data (a, θ, u);

p(s,o,α,αθ,αu |a,θ,u)

∝ p(a |o,F(s),α)p(θ |Fθ(s),αθ)p(u |Fu(s),αu)

× p(α)p(αθ)p(αu)p(s)p(o).

(12)

Regarding a MCMC sampler that samples all the unknowns. Such sam-
pler would loop through the following sub-sampling steps:

1. Sampling s: A Metropolis-Hasting sampler. A new proposed value for
s would be evaluated (accepted/rejected) based on feedback from all
three data sources.
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2. Sampling o: A Gibbs sampler. A new realization would only depend
on the arrival time data.

3. Sampling (β, τ ,κ,λ): A mixture of Metropolis-Hasting random-walk
and Gibbs samplers: A new proposed value would only depend on the
arrival time data.

4. Sampling (βθ, τ θ,κθ,λθ): A mixture of Metropolis-Hasting random-
walk and Gibbs samplers: A new proposed value would only depend
on the back azimuth data.

5. Sampling (βu, τu,κu,λu): A mixture of Metropolis-Hasting random-
walk and Gibbs samplers: A new proposed value would only depend
on the slowness data.

4 Conclusion

We have outlined how the Bayesian framework can be used to blend together
three sources of seismic data (arrival times, back azimuth, and slowness) to
yield a more accurate event locations. The approach taken here to develop
the statistical model for the back azimuth and the slowness data very much
mirrors the approach taken in the current version of BayesLoc, which only
uses arrival time data, by introducing statistical “bias” corrections and “pre-
cision” factors for each data source.

There is a work in progress to extend the arrival time only BayesLoc pro-
gram to take advantage of possible back azimuth and slowness data following
the template outlined in this document.
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